Sodium nitrite mitigates ventilator-induced lung injury in rats.

نویسندگان

  • Philipp A Pickerodt
  • Michael J Emery
  • Rachel Zarndt
  • William Martin
  • Roland C E Francis
  • Willehad Boemke
  • Erik R Swenson
چکیده

BACKGROUND Nitrite (NO2) is a physiologic source of nitric oxide and protects against ischemia-reperfusion injuries. We hypothesized that nitrite would be protective in a rat model of ventilator-induced lung injury and sought to determine if nitrite protection is mediated by enzymic catalytic reduction to nitric oxide. METHODS Rats were anesthetized and mechanically ventilated. Group 1 had low tidal volume ventilation (LVT) (6 ml/kg and 2 cm H2O positive end-expiratory pressure; n=10); group 2 had high tidal volume ventilation (HVT) (2 h of 35 cm H2O inspiratory peak pressure and 0 cm H2O positive end-expiratory pressure; n=14); groups 3-5: HVT with sodium nitrite (NaNO2) pretreatment (0.25, 2.5, 25 μmol/kg IV; n=6-8); group 6: HVT+NaNO2+nitric oxide scavenger 2-(4-carboxyphenyl)-4,5dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-oxy-3oxide(n=6); group 7: HVT+NaNO2+nitric oxide synthase inhibitor N-nitro-L-arginine methyl ester (n=7); and group 8: HVT+NaNO2+xanthine oxidoreductase inhibitor allopurinol (n=6). Injury assessment included physiologic measurements (gas exchange, lung compliance, lung edema formation, vascular perfusion pressures) with histologic and biochemical correlates of lung injury and protection. RESULTS Injurious ventilation caused statistically significant injury in untreated animals. NaNO2 pretreatment mitigated the gas exchange deterioration, lung edema formation, and histologic injury with maximal protection at 2.5 μmol/kg. Decreasing nitric oxide bioavailability by nitric oxide scavenging, nitric oxide synthase inhibition, or xanthine oxidoreductase inhibition abolished the protection by NaNO2. CONCLUSIONS Nitrite confers protection against ventilator-induced lung injury in rats. Catalytic reduction to nitric oxide and mitigation of ventilator-induced lung injury is dependent on both xanthine oxidoreductase and nitric oxide synthases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curcumin Mitigates Radiation-induced Lung Pneumonitis and Fibrosis in Rats

Radiation-induced lung injury is one of the most prominent factors that interfere with chest cancer radiotherapy, and poses a great threat to patients exposed to total body irradiation. Upregulation of pro-oxidant enzymes is one of the main mechanisms through which the late effects of ionizing radiation on lung injury can be exerted. Interleukin (IL)-4 and IL-13 are two important cytokines that...

متن کامل

Mitigation of chlorine gas lung injury in rats by postexposure administration of sodium nitrite.

Nitrite (NO(2)(-)) has been shown to limit injury to the heart, liver, and kidneys in various models of ischemia-reperfusion injury. Potential protective effects of systemic NO(2)(-) in limiting lung injury or enhancing repair have not been documented. We assessed the efficacy and mechanisms by which postexposure intraperitoneal injections of NO(2)(-) mitigate chlorine (Cl(2))-induced lung inju...

متن کامل

The Protective Effect of Sodium Ferulate and Oxymatrine Combination on Paraquat-induced Lung Injury

Experimental evidence suggested that sodium ferulate (SF) and oxymatrine (OMT) combination had synergistic anti-inflammatory and antioxidant effects. We hypothesized that SF and OMT combination treatment might have protective effects on paraquat-induced acute lung injury. In our study, the Swiss mice were randomly divided into seven groups, including control, paraquat (PQ), SF (6.2 mg/kg/day); ...

متن کامل

Alveolar macrophages contribute to alveolar barrier dysfunction in ventilator-induced lung injury.

In patients requiring mechanical ventilation for acute lung injury or acute respiratory distress syndrome (ARDS), tidal volume reduction decreases mortality, but the mechanisms of the protective effect have not been fully explored. To test the hypothesis that alveolar macrophage activation is an early and critical event in the initiation of ventilator-induced lung injury (VILI), rats were venti...

متن کامل

High tidal volume ventilation induces NOS2 and impairs cAMP- dependent air space fluid clearance.

Tidal volume reduction during mechanical ventilation reduces mortality in patients with acute lung injury and the acute respiratory distress syndrome. To determine the mechanisms underlying the protective effect of low tidal volume ventilation, we studied the time course and reversibility of ventilator-induced changes in permeability and distal air space edema fluid clearance in a rat model of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Anesthesiology

دوره 117 3  شماره 

صفحات  -

تاریخ انتشار 2012